73 research outputs found

    Hierarchical quantum communication

    Full text link
    A general approach to study the hierarchical quantum information splitting (HQIS) is proposed and the same is used to systematically investigate the possibility of realizing HQIS using different classes of 4-qubit entangled states that are not connected by SLOCC. Explicit examples of HQIS using 4-qubit cluster state and 4-qubit |\Omega> state are provided. Further, the proposed HQIS scheme is generalized to introduce two new aspects of hierarchical quantum communication. To be precise, schemes of probabilistic hierarchical quantum information splitting and hierarchical quantum secret sharing are obtained by modifying the proposed HQIS scheme. A number of practical situations where hierarchical quantum communication would be of use are also presented.Comment: 14 pages, 6 tables, no figur

    Hierarchical Joint Remote State Preparation in Noisy Environment

    Full text link
    A novel scheme for quantum communication having substantial applications in practical life is designed and analyzed. Specifically, we have proposed a hierarchical counterpart of the joint remote state preparation (JRSP) protocol, where two senders can jointly and remotely prepare a quantum state. One sender has the information regarding amplitude, while the other one has the phase information of a quantum state to be jointly prepared at the receiver's port. However, there exists a hierarchy among the receivers, as far as powers to reconstruct the quantum state is concerned. A 5-qubit cluster state has been used here to perform the task. Further, it is established that the proposed scheme for hierarchical JRSP (HJRSP) is of enormous practical importance in critical situations involving defense and other sectors, where it is essential to ensure that an important decision/order that can severely affect a society or an organization is not taken by a single person, and once the order is issued all the receivers don't possess an equal right to implement it. Further, the effect of different noise models (e.g., amplitude damping (AD), phase damping (PD), collective noise and Pauli noise models) on the HJRSP protocol proposed here is investigated. It is found that in AD and PD noise models a higher power agent can reconstruct the quantum state to be remotely prepared with higher fidelity than that done by the lower power agent(s). In contrast, the opposite may happen in the presence of collective noise models. We have also proposed a scheme for probabilistic HJRSP using a non-maximally entangled 5-qubit cluster state.Comment: 24 pages, 6 figure

    Orthogonal-state-based protocols of quantum key agreement

    Full text link
    Two orthogonal-state-based protocols of quantum key agreement (QKA) are proposed. The first protocol of QKA proposed here is designed for two-party QKA, whereas the second protocol is designed for multi-party QKA. Security of these orthogonal-state-based protocols arise from monogamy of entanglement. This is in contrast to the existing protocols of QKA where security arises from the use of non-orthogonal state (non-commutativity principle). Further, it is shown that all the quantum systems that are useful for implementation of quantum dialogue and most of the protocols of secure direct quantum communication can be modified to implement protocols of QKA.Comment: 9 pages, no figur

    Beyond the Goldenberg-Vaidman protocol: Secure and efficient quantum communication using arbitrary, orthogonal, multi-particle quantum states

    Full text link
    It is shown that maximally efficient protocols for secure direct quantum communications can be constructed using any arbitrary orthogonal basis. This establishes that no set of quantum states (e.g. GHZ states, W states, Brown states or Cluster states) has an advantage over the others, barring the relative difficulty in physical implementation. The work provides a wide choice of states for experimental realization of direct secure quantum communication protocols. We have also shown that this protocol can be generalized to a completely orthogonal state based protocol of Goldenberg-Vaidman (GV) type. The security of these protocols essentially arises from duality and monogamy of entanglement. This stands in contrast to protocols that employ non-orthogonal states, like Bennett-Brassard 1984 (BB84), where the security essentially comes from non-commutativity in the observable algebra.Comment: 7 pages, no figur

    Semi-quantum communication: Protocols for key agreement, controlled secure direct communication and dialogue

    Full text link
    Semi-quantum protocols that allow some of the users to remain classical are proposed for a large class of problems associated with secure communication and secure multiparty computation. Specifically, first time semi-quantum protocols are proposed for key agreement, controlled deterministic secure communication and dialogue, and it is shown that the semi-quantum protocols for controlled deterministic secure communication and dialogue can be reduced to semi-quantum protocols for e-commerce and private comparison (socialist millionaire problem), respectively. Complementing with the earlier proposed semi-quantum schemes for key distribution, secret sharing and deterministic secure communication, set of schemes proposed here and subsequent discussions have established that almost every secure communication and computation tasks that can be performed using fully quantum protocols can also be performed in semi-quantum manner. Further, it addresses a fundamental question in context of a large number problems- how much quantumness is (how many quantum parties are) required to perform a specific secure communication task? Some of the proposed schemes are completely orthogonal-state-based, and thus, fundamentally different from the existing semi-quantum schemes that are conjugate-coding-based. Security, efficiency and applicability of the proposed schemes have been discussed with appropriate importance.Comment: 19 pages 1 figur

    Protocols and quantum circuits for implementing entanglement concentration in cat state, GHZ-like state and 9 families of 4-qubit entangled states

    Full text link
    Three entanglement concentration protocols (ECPs) are proposed. The first ECP and a modified version of that are shown to be useful for the creation of maximally entangled cat and GHZ-like states from their non-maximally entangled counterparts. The last two ECPs are designed for the creation of maximally entangled (n+1)(n+1)-qubit state 12(Ψ00+Ψ11)\frac{1}{\sqrt{2}}\left(|\Psi_{0}\rangle|0\rangle+|\Psi_{1}\rangle|1\rangle\right) from the partially entangled (n+1)(n+1)-qubit normalized state αΨ00+βΨ11\alpha|\Psi_{0}\rangle|0\rangle+\beta|\Psi_{1}\rangle|1\rangle, where Ψ1Ψ0=0\langle\Psi_{1}|\Psi_{0}\rangle=0 and α12|\alpha|\neq\frac{1}{\sqrt{2}}. It is also shown that W, GHZ, GHZ-like, Bell and cat states and specific states from the 9 SLOCC-nonequivalent families of 4-qubit entangled states can be expressed as 12(Ψ00+Ψ11)\frac{1}{\sqrt{2}}\left(|\Psi_{0}\rangle|0\rangle+|\Psi_{1}\rangle|1\rangle\right) and consequently the last two ECPs proposed here are applicable to all these states. Quantum circuits for implementation of the proposed ECPs are provided and it is shown that the proposed ECPs can be realized using linear optics. Efficiency of the ECPs are studied using a recently introduced quantitative measure (Phys. Rev. A 85\textbf{85}, 012307 (2012)). Limitations of the measure are also reported.Comment: 11 pages 7 figure

    Controlled bidirectional remote state preparation in noisy environment: A generalized view

    Full text link
    It is shown that a realistic, controlled bidirectional remote state preparation is possible using a large class of entangled quantum states having a particular structure. Existing protocols of probabilistic, deterministic and joint remote state preparation are generalized to obtain the corresponding protocols of controlled bidirectional remote state preparation (CBRSP). A general way of incorporating the effects of two well known noise processes, the amplitude-damping and phase-damping noise, on the probabilistic CBRSP process is studied in detail by considering that noise only affects the travel qubits of the quantum channel used for the probabilistic CBRSP process. Also indicated is how to account for the effect of these noise channels on deterministic and joint remote state CBRSP protocols.Comment: 11 pages, 2 figure
    corecore